Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Unlocking the potential of optogenetics in microbial applications.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Microbiol, 30 Nov 2023 DOI: 10.1016/j.mib.2023.102404 Link to full text
Abstract: Optogenetics is a powerful approach that enables researchers to use light to dynamically manipulate cellular behavior. Since the first published use of optogenetics in synthetic biology, the field has expanded rapidly, yielding a vast array of tools and applications. Despite its immense potential for achieving high spatiotemporal precision, optogenetics has predominantly been employed as a substitute for conventional chemical inducers. In this short review, we discuss key features of microbial optogenetics and highlight applications for understanding biology, cocultures, bioproduction, biomaterials, and therapeutics, in which optogenetics is more fully utilized to realize goals not previously possible by other methods.
2.

Optogenetic closed-loop feedback control of the unfolded protein response optimizes protein production.

blue EL222 S. cerevisiae Transgene expression
Metab Eng, 11 Mar 2023 DOI: 10.1016/j.ymben.2023.03.001 Link to full text
Abstract: In biotechnological protein production processes, the onset of protein unfolding at high gene expression levels leads to diminishing production yields and reduced efficiency. Here we show that in silico closed-loop optogenetic feedback control of the unfolded protein response (UPR) in S. cerevisiae clamps gene expression rates at intermediate near-optimal values, leading to significantly improved product titers. Specifically, in a fully-automated custom-built 1L-photobioreactor, we used a cybergenetic control system to steer the level of UPR in yeast to a desired set-point by optogenetically modulating the expression of α-amylase, a hard-to-fold protein, based on real-time feedback measurements of the UPR, resulting in 60% higher product titers. This proof-of-concept study paves the way for advanced optimal biotechnology production strategies that diverge from and complement current strategies employing constitutive overexpression or genetically hardwired circuits.
Submit a new publication to our database